Given circle is S = x2+y2−2x+4y=0.........................(i)
Let P≡(0,1) For point P, S1=02+12−2.0+4.1=5
Clearly P lies outside the circle and T≡x.0+y.1−(x+0)+2(y+1) i.e. T≡−x+3y+2
Now equation of pair of tangents from P(0, 1) to circle (1) is SS1=T2
or 5(x2+y2−2x+4y)=(−x+3y+2)2
or 5x2+5y2−10x+20y)=x2+9y2+4−6xy−4x+12y
or 4x2−4y2−6x+8y+6xy−4=0
or 2x2−2y2+3xy−3x+4y−2=0...............(ii)
Separate equation of pair of tangents From (ii) 2x2+3(y−1)x−2(2y2−4y+2)=0
∴x=−3(y−1)±√9(y−1)2+8(2y2−4y+2)4
or 4x+3y−3=±√25y2−50y+25=±5(y−1)
∴ Separate equations of tangents are 2x−y+1=0 and x+2y−2=0