Find the equation of the parabola whose:
(i) focus is (3,0) and the directrix is 3x+4y=1
(ii) focus is (1,1) and the directrix is x+y+1=0
(iii) focus is (0,0) and the directrix is 2x-y-1=0
(iv) focus is (2,3) and the directrix is x-4y+3=0
(i) Let P(x,y) be any point on the parabola whose focus is S(3,0) and the directrix 3x+4y=1.Draw PM perpendicular from P(x,y) on the directrix 3x+4y=1
Then by definition SP=PM
⇒SP2=PM2⇒(x−3)2+(y−0)2=(3x+4y−1√(3)2+(4)2)2⇒x2+9−6x+y2=(3x+4y−1)2√(25)2⇒x2−6x+y2+9=(3x+4y−1)225⇒25(x2−6x+y2+9)=(3x+4y−1)2⇒25x2−150x+25y2+225=(3x)3+(4y)2+(−1)2+2×3x×4y+2×4y×(−1)+2×(−1)×3x⇒25x2−150x+25y2+225=9x2+16y2+1+24xy−8y−6x⇒25x2−9x2+25y2−16y2−150x+6x+8y−24xy+225−1=0⇒16x2+9y2−144x+8y−24xy+224=0⇒16x2+9y2−24xy−144x+8y+224=0
This is the equation of the required parabola.
(ii) Let P(x,y) be any point on the parabola whose focus is S(1,1) and the directrix x+y+1=0.Draw PM perpendicular from P(x,y) on the directrix x+y+1=0
Then by definition SP=PM
⇒SP2=PM2⇒(x−1)2+(y−1)2=(x+y+1√(1)2+(1)2)2⇒x2+1−2x+y2+1−2y=((x+y+1)2√2)⇒x2+y2−2x−2y+2=(x+y+1)22⇒2(x2+y2−2x−2y+2)=x2+y2+1+2xy+2y+2x⇒2x2+2y2−4x−4y+4=x2+y2+1+2xy+2y+2x⇒2x2−x2+2y2−y2−2xy−4x−2x−4y−2y+4−1=0⇒x2+y2−2xy−6x−6y+3=0This is the equation of the required parabola.
(iii) Let P(x,y) be any point on the parabola whose focus is S(0,0) and the directrix 2x-y-1=0.
Draw PM perpendicular from P(x,y) on the directrix 2x-y-1=0.
Then by definition SP=PM
⇒SP2=PM2⇒(x−0)2+(y−0)2=(2x−y−1√(2)2+(−1)2)2⇒x2+y2=((2x−y−1)2√(5)2))⇒5(x2+y2)=(2x−y−1)2⇒5x2+5y2=(2x)2+(−y)2+(−1)2+2×2x(−y)+2(−y)×(−1)+2×(−1)×2x⇒5x2+5y2=4x2+y2+1−4xy+2y−4x⇒5x2−4x2+5y2−y2+4xy+4x−2y−1=0⇒x2+4y2+4xy+4x−2y−1=0This is the equation of the required parabola.
(iv) Let P(x,y) be any point on the parabola whose focus is S(2,3) and the directrix x-4y+3=0.Draw PM perpendicular from P(x,y) on the directrix x-4y+3=0.
Then by definition SP=PM
⇒SP2=PM2⇒(x−2)2+(y−3)2=(x−4y+3√(1)2+(−4)2)2⇒x2+4−4x+y2+9−6y=((x−4y+3)2√(17)2))⇒x2+y2−4x−6y+4+9=(x−4y+3)217⇒17(x2+y2−4x−6y+13)=(x−4y+3)2⇒17x2+17y2−68x−102y+221=x2+(−4y)2+32+2×3×x⇒17x2+17y2−68x−102y+221=x2+16y2+9−8xy−24y+6x⇒17x2−x2+17y2−16y2+8xy−68x−6x−102y+24y+221−9=0⇒16x2+y2+8xy−74x−78y+212=0This is the equation of the required parabola.