The given points are
A(−3,−2,1) and B(1,6,−5)
The line segment AB is given by (x2−x1),(y2−y1) and (z2−z1)
∴(1−(−3)),(6−(−2)),(−5−1)
or, (5,8,−6)
∵ the plane bisects AB at right angles, −−→AB is the normal to the plane which is →n.
∴→n=ˆi+ˆj+2ˆk
Let c be the mid point of AB,
then,
(x1+x22,y1+y22,z1+z22)=c(−3+12,−2+62,1+(−5)2)=c(−22,42,−42)=c(−1,2,−2)
Let this be →a=−ˆi+2ˆj−2ˆk
Hence,
The vector equation of the plane passing through c and ⊥AB is
(→r−(−ˆi+2ˆj−2ˆk)).(5ˆi+8ˆj−6ˆk)=0
We know that,
→r=xˆi+yˆj+zˆk⇒[(xˆi+yˆj+zˆk).(−ˆi+2ˆj−2ˆk)].(5ˆi+8ˆj−6ˆk)=0
Applying the product rule, we get,
[(x+1)ˆi+(y−2)ˆj+(z+2)ˆk].(5ˆi+8ˆj−6ˆk)=0
Applying product rule, we get,
5(x+1)+8(y−2)+(−6)(z+2)=0
On simplifying we get,
5x+8y−6z=13
This is the required equation of plane.