Find the equation of the plane passing through (2,2,−2) and (−2,−2,2) and perpendicular to the plane 2x−3y+z−7=0.
Open in App
Solution
Suppose required plane is ax+by+ca+d=0 ∴¯n=(a,b,c) is normal to the plane Required plane is perpendicular to 2x−3y+z−7=0 ∴¯n⋅(2,3,1)=0(1) Now A(2,2,−2) and B(−2,−2,2) are the points of plane. ∴−−→AB=B−A=(−4,−4,4) ∴¯n⋅−−→AB=0 ∴¯n⋅(−4,−4,4)=0 ∴¯n⋅(−1,−1,1)=0 .(2)
From result (1) and (2) we have ∴¯n=(2,−3,1)×(−1,−1,1) =∣∣
∣∣ijk2−31−1−11∣∣
∣∣ =i(−3+1)−j(2+1)+k(−2,−2) =−2^i−3^j−5^k ∴¯n=(−2,−3,−5) OR ¯n=(2,3,5)
If plane passes from point A(¯a)=(2,2,−1) Then we get its equation using ¯r⋅¯n=¯a⋅¯n (x,y,z)⋅(2,3,5)=(2,2,−2)⋅(2,3,5) ∴2x+3y+5z=4+6−10 ∴2x+3y+5z=0 Which is required equation of plane.