PerpendiculardistanceofplanefromtheoriginP=∣∣∣d√a2+b2+c2∣∣∣equnofplanepassingthroughthelineofintersectionoftwoplaneis(a1x+b1y+c1z+d1)+λ(a2x+b2y+c2z+d2)=0Lettheequationoftheplanepassingthorughthelineofintersectionoftheplanesx+3y−6=0and3x−y−4z=0x+3y−6+λ(3x−y−4z)=0⇒x(1+3λ)+y(3−λ)+z(0−4λ)+(−6)=0Now,∣∣∣d√a2+b2+c2∣∣∣=1⇒∣∣
∣∣−6√(1+3λ)2+(3−λ)2+(−4λ)2∣∣
∣∣⇒√26λ2+10=6⇒26λ2+10=36⇒λ2=1∴λ=±1puttingλ=+17x+2y−4z−6=0⇒2x+y−2z−3=0whenλ=−1⇒−2x+4y+4z−6=0x−2y−2z+3=0