Find the equation of the plane through the intersection of the planes →r.(^i+3^j)−6=0 and →r.(3^i−^j)−4^k=0, whose perpendicular distance from origin is unity.
We have, →n1=(^i+3^j),d1=6 and →n2=(3^i−^j−4^k),d2=0
Using the relation, →r.(→n1+λ→n2)=d1+d2λ⇒ →r.[(^i+3^j+λ(3^i−^j−4^k)]=6+0.λ→r.[(1+3λ)^i+(3−λ)^j+k(−4λ)]=6 ...(i)On dividing both sides by √(1+3λ)2+(3−λ)2+(−4λ)2,we get→r.[(1+3λ)^i+(3−λ)^j+k(−4λ)]√(1+3λ)2+(3−λ)2+(−4λ)2=6√(1+3λ)2+(3−λ)2+(−4λ)2
∴ 6√(1+3λ)2+(3−λ)2+(−4λ)2=1⇒ (1+3λ)2+(3−λ)2+(−4λ)2=36⇒ 1+9λ2+6λ+9+λ2−6λ+16λ2=36⇒ 26λ2+10=36⇒ λ2=1∴ λ=± 1
Using Eq.(i),the required equation of plane is
→r.[(1±3)^i+(3±1)^j+(±4)^j]=6⇒ →r.[(1+3)^i+(3−1)^j+(−4)^j]=6and →r.[(1−3)^i+(3+1)^j+4^j]=6⇒ →r.(4^i+2^j−4^k)=6and →r.(−2^i+4^j+4^k)=6⇒ 4x+2y−4z−6=0and −2x+4y+4z−6=0