Equation of the planes are
2x+y−z=3 and 5x−3y+4z+9=0
The equation of the plane passing through the line of intersection of these planes is
(2x+y−z−3)+λ(5x−3y+4z+9)=0
⇒x(2+5λ)+y(1−3λ)+z(4λ−1)+9λ−3=0 …………(1)
The plane is parallel to the line
x−12=y−33=z−55
∴2(2+5λ)+4(1−3λ)+3(4λ−1)=0
i.e., 18λ+3=0
⇒18λ=−3
⇒λ=−3/186
∴λ=−1/6
Put the value λ in equation-(1) we obtain
x(2+5(−1/6))+y(1−3(−1/6))+z(4(−1/6)−1)+9(−1/6)−3=0
⇒x(2−5/6)+y(1+3/6)+z(−4/6−1)−(9/6−3)=0
⇒x(12−5/6)+y(6+3/6)+z(−4−6/6)−9−18/6=0
⇒x⋅7/6+y(9/6)+z(−10/6)−27/6=0
⇒1/6(7x+9y−10z−27)=0
⇒7x+9y−10z−27=0
∴ The required equation of the plane is 7x+9y−10z−27=0.