Find the equation of the plane through the points (2,1,-1), (-1,3,4) and perpendicular to the plane x-2y+4z=10.
The equation of the plane passing through (2,1,-1) is
a(x-2)+b(y-1)+c(z+1)=0 ...(i)
Since, this passes through (-1,3,4).
∴a(−1−2)+b(3−1)+c(4+1)=0
⇒−3+2b+5c=0 ...(ii)
Since, the plane (i) is perpendicular to the plane x-2y+4z=10.
∴1.a−2.b+4.c=0
⇒a−2b+4c=0 ...(iii)
On solving Eqs. (ii) and (iii), we get ...(iii)
a8+10=−b−17=c4=λ
⇒a=18λ,b=17λ,c=4λ
From Eq.(i).
18λ(x−2)+17λ(y−1)+4λ(z+1)=0⇒18x−36+17y−17+4z+4=0⇒18x+17y+4z−49=0∴18x+17y+4z=49