Find the equation of the set of points P, the sum of whose distance from A(4, 0, 0) and B(−4, 0, 0) is equal to 10.
Let P(x, y, z) be any point.
Then
PA=√(x−4)2+(y−0)2+(z−0)2
= √x2+16−8x+y2+z2
PB=√(x+4)2+(y−0)2+(z−0)2
= √x2+16+8x+y2+z2
It is given that PA+PB=10
∴ √x2+16−8x+y2+z2
+√x2+16+8x+y2+z2=10
⇒ √x2+16−8x+y2+z2
= 10−√x2+16+8x+y2+z2
Squaring both sides, we have
x2+16−8x+y2+z2
= 100+x2+16+8x+y2+z2
−20√x2+16+8x+y2+z2
⇒ 20√x2+16+8x+y2+z2=16x+100
⇒ 5√x2+16+8x+y2+z2=4x+25
Squaring both sides again, we have
25(x2+16+8x+y2+z2)=16x2+625+200x
⇒ 25x2+400+200x+25y2+25z2−16x2−625−200x=0
⇒ 9x2+25y2+25z2−225=0
Thus the required equation is
9x2+25y2+25z2−225=0.