PA+PB=10
or, √(x−4)2+y2+z2+√(x+4)2+y2+z2=10
or, √(x+4)2+y2+z2=10−√(x−4)2+y2+z2
Now squaring both sides we get,
(x+4)2+y2+z2=100−20√(x−4)2+y2+z2+(x−4)2+y2+z2
or, (x+4)2−(x−4)2=100−20√(x−4)2+y2+z2
or, 4.x.4=100−20√(x−4)2+y2+z2
or, 4x=25−5√(x−4)2+y2+z2
or, 4x−25=−5√(x−4)2+y2+z2
Again squaring both sides we get,
or, 16x2−200x+625=25{(x2−8x+16)+y2+z2}
or, 9x2+25y2+25z2=225.
This is the required equation.