wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equation of the tangent and normal to the curve x=sin3θ and y=a cos3θ at θ=π4.

Open in App
Solution

x=sin3θ,y=acos3θ

x=sin3θdxdθ=3sin2θcosθ

y=acos3θdydθ=3acos2θsinθ

dydx=dydθdxdθ=3acos2θsinθ3sin2θcosθ=acosθsinθ

Equation of tangent,

yy1=dydx(xx1)

yacos3θ=(acosθsinθ)(xsin3θ)

sbstitute θ=π4

y(a22)=(a)(x122)

y(a22)=ax+(a22)

ax+y=(a2)

2ax+2y=a

Equation of normal,

yacos3θ=(sinθacosθ)(xsin3θ)

sbstitute θ=π4

y(a22)=1a(x122)

y(a22)=xa+1a22

y+xa=1a22+a22

y+xa=a2+1a22

22x+a22y=a2+1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Representation-Ellipse
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon