wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equation of the tangent and normal to the curves
(i) y=x24x5 at x=2
(ii) y=xsinxcosx
(iii) y=2sin23x at x=π6

Open in App
Solution

(i)
y=x24x5
at x=2
y=(2)2+85=7
dydx=2x4
at x=2,dydx=8
eq of tangent :
(y7)=8(x+2)
y+8x+9=0
eq of normal(y7)=18(x+2)
x8y+58=0
(ii)
y=xsinx ws x
atx= \dfrac{x}{6}$
y=π612.32
=π634
dydx=1cos2x+sin2x
=2sin2x
at x=π6,dydx=2.14=12
eq of tangent :
(yπ6+34)=12(xπ6)
eq of normal
(yπ6+34)=2(xπ6)
(iii)
y=2sin23x
at x=π6
y=2sin2π2=2
dydx=4sin3x,cos3x
at x=π6,dydx=0.
eq of tangent :
(y2)=0
y=2
eq of normal
xπ6=0
x=π6

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Characteristics of Sound Waves
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon