Find the equation of the tangent and the normal to the curve 16x2+9y2=145 at the point (x1,y1), where x1=2 and y1>0.
OR
Find the intervals in which the function f(x)=x44−x3−5x2+24x+12 is (a) strictly increasing, (b) strictly decreasing.
Let P(x1,y1) where x1=2 and y1>0
Given curve is 16x2+9y2=145.....(i)
Clearly P shall satisfy (i) so, 64+9y21=145⇒y1=3 (as y1>0
Therefore , point of contact is P(2,3).
Now 32x+18y×dydx=0 ⇒dydx=−169y ∴dydx]at P=−16×29×3=3227=mT
Eq. of tangent : y−3=−3227(x−2)⇒32x+27y=145
Eq. of normal : y−3=−2732(x−2)⇒27x+32y+42=0
OR Here f(x)=x44−x3−5x2+24x+12⇒f′(x)=x3−3x2−10x+24=(x−2)(x−4)(x+3)For f′(x)=0,(x−2)(x−4)(x+3)=0 ∴x=2,4,−3.
IntervalSign of f'(x)Nature of f(x)(−∞,−3)-veStrictly decreasing(−3,2)+veStrictly increasing(2,4)-veStrictly decreasing(4,∞)+veStrictly increasing