x=asect and
y=btantDifferentiating w.r.t t, we get,
⇒ dxdt=asecttant and dydt=bsec2t
Slope of tangent, m=(dydx)(t=t)=bacosect
Now, (x1,y1)=(asect,btant)
The equation of tangent :
y−y1=m(x−x1)
⇒ y−btant=bacosect(x−asect)
⇒ y−bsintcost=basint(x−acost)
⇒ ycost−bsintcost=basint(xcost−acost)
⇒ ycost−bsint=basint(xcost−a)
⇒ aysintcost−absin2t=bxcost−ab
⇒ bxcost−aysintcost−ab(1−sin2t)=0
⇒ bxcost−aysintcost=abcos2t
Dividing both sides by cos2t,
⇒ bxsect−aytant=ab
Equation of normal is,
y−y1=m(x−x1)
⇒ y−btant=−absint(x−asect)
⇒ ycost−bsintcost=−absint(xcost−acost)
⇒ ycost−bsint=−absint(xcost−a)
⇒ bycost−b2sint=−axsintcost+a2sin2t
⇒ axsintcost+bycost=(a2+b2)sint
Dividing both sides by sint,
⇒ axcost+bycott=a2+b2
∴ The equation of tangent is bxsect−aytant=ab.
∴ The equation of normal is axcost+bycott=a2+b2