wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equation of the tangent and the normal to the following curves at the indicated points.
x2a2+y2b2=1 at (acosθ,bsinθ).

Open in App
Solution

x2a2+y2b2=1

Differentiating both sides w.r.t. x,

2xa2+2yb2dydx=0

2yb2dydx=2xa2

dydx=xb2ya2

Slope of tangent, m=(dydx)(acosθ,bsinθ)=acosθ(b2)bsinθ(a2)

=bcosθasinθ

(x1,y1)=(acosθ,bsinθ)

Equation of tangent :
yy1=m(xx1)

ybsinθ=bcosθasinθ(xacosθ)

aysinθabsin2θ=bxcosθ+abcos2θ

bxcosθ+aysinθ=ab

Dividing by ab,

xacosθ+ybsinθ=1

Equation of normal:
yy1=1m(xx1)

ybsinθ=asinθbcosθ(xacosθ)

bycosθb2sinθcosθ=axsinθa2sinθcosθ

axsinθbycosθ=(a2b2)sinθcosθ

Dividing by sinθcosθ

axsecθbycosecθ=(a2b2)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ellipse and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon