Equation of tangent is dydx=12√3x−2×3 at (h,k)slope of tangent=32√3h−2 Given tangent is parallel to line 4x−2y+5 so slope of tangent=slope of line
⇒32√3h−2=2
⇒9=16(3h−2)
⇒3h=2+916
⇒h=4148
∵(h1k) lies on curve so
k=√3h−2=√3×4148−2=√916=34
∴(h1k)=(4148,34)
eqn of tangent is y−34=2(x−4148)
⇒4y−3=848(48x−41)
⇒24y−18=40x−41
⇒48x−24y=23
eqn of normal is y−34=−12(x−4148)
⇒4y−3=−248(48x−41)
⇒96y−72=−48x+41
⇒48x+96y=113