When the curve cuts x-axis, y = 0 i.e., (x3−1)(x−2)=0
⇒(x−1)(x2+x+1)(x−2)=0 ∴x=1,2 (as x2+x+1≠0 ∀ xϵR.
Hence points of contact are A(1, 0) and B(2, 0).
Now dydx=(x3−1)+3(x−2)x2=4x3−6x2−1 ∴(dydx)at A=−3,(dydx)at B=7,
Now equation of tangent at A : y - 0 = - 3(x-1) i.e., 3x + y = 3.
And equation of tangent at B : y - 0 = 7(x-2) i.e., 7x - y = 14.