Length of perpendicular =p=ax1+by1+c√a2+b2−2abcosωsinω
p=3.1+4.1+5√32+42−2(3)(4)cos120∘sin120∘p=12√37×√32p=6√11137
When the axes is inclined angle between two line is given by
tanθ=m−m′sinω1+(m+m′)cosω+mm′
Slope of given line =m=−34
Let the slope of line perpendicular to given line be m′
θ=π2⇒tanθ=∞m−m′sinω1+(m+m′)cosω+mm′=∞⇒1+(m+m′)cosω+mm′=01+(−34+m′)cos120∘−34m′=01+(−34+m′)−12−34m′=0⇒m′=1110
Equation of line passing through (1,1) with slope m′ is
y−1=1110(x−1)10y−10=11x−1110y−11x+1=0