Let the circle be
(x−h)2+(y−k)2=r2
(12,43),(18,39),(42,3) satisfy the equation
(12−h)2+(43−k)2=r2
h2+144−24h+1849+k2−86k=r2
h2+k2−24h−86k+1993=r2 ........(1)
For second point
(18−h)2+(39−k)2=r2
h2+k2−36h−28k+1845=r2 .........(2)
For third point
(42−h)2+(3−k)2=r2
h2+k2−84h−6k+1773=r2 ......(3)
Subtracting (3) from (1) and (2) from (1)
60h−80k+220=0
3h−4k+11=0 .............(4)
12h−8k+148=0
3h−2k+37=0 ....................(5)
On solving (4) and (5), we get
k=−13,h=−21
Putting values in (1)
r2=(12+21)2+(13+43)2=(65)2
So, equation of circle is
(x+21)2+(y+13)2=(65)2
For proving that the point lies on the circle, the point must satisfy the equation of circle
For point (−54,−69)
⇒(−54+21)2+(−69+13)2=(65)2
⇒4225=4225
Hence proved
For point (−81,−38)
⇒(−81+21)2+(−38+13)2=(65)2
⇒4225=4225
Hence proved.