Let the center of the circle be
(h,k)Since the center is equidistant from all the points on the circle,
(h−1)2+(k+2)2=(h−4)2+(k+3)2
⇒h2−2h+1+k2+4k+4=h2−8h+16+k2+6k+9
⇒6h−2k−20=0 or 3h−k−10=0 ........(1)
The center also satisfies 3h+4k−7=0
Finding the intersection of these lines, we get
3h−k−10 = 3h+4k−7
Put value in equation (1)
5k+3=0 or k=−35
∴3h=10−35=475 or h=4715
The radius will be √(4715−1)2+(−35+2)2=√(3215)2+(75)2=√1024+441225=√1465225
The circle equation is therefore (x−4715)2+(y+35)2=29345