Equations of given circles are,
S≡x2+y2−4x−10y+28=0 ------ ( 1 )
S≡x2+y2+4x−6y+4=0 ------- ( 2 )
Centers(−g,−f): C1(2,5),C2(−2,3)
Radius(r)=√g2+f2−c
r1=√22+52−28=√4+25−28=1
r2=√22+32−4=√4+9−4=√9=3
Internal center of similutute divides C1C2
Internally in the ratio r1:r2=1:3=m:n
P=[mx2+nx1m+n,my2+ny1m+n]=(1(−2)+3(2)1+3,1(3)+3(5)1+3)
=(44,184)=(1,92)
let m be the slope of common tangent
Equation of tangent is (y−y1)m=(x−x1)p(1,92)
⇒ (y−92)=m(x−1)→(2y−9)2=m(x−1)
⇒ 2mx−2y−2m+9=0 ------- ( 1 )
Condition for tangent r=⊥r distance
r1=⊥r distance from C1(2,5) to (1)
d=|ax1+by1+c|√a2+b2⇒|2m(2)−2(5)−2m+9|√(2m)2+(2)2=1
⇒ |2m−1|√4m2+4=1 S.O.B.S
⇒ (2m−1)2=4m2+4
⇒ 4m2+1−4m=4m2+4 {m=∞=10
⇒ −3=4m or m=−34
∴ Equation of tangents are,
(y−92)=10(x−1)⇒x−1=0
And (y−92)=−34(x−1)
⇒ 4y−18=−3x+3
⇒ 3x+4y−21=0
3x+4y−21=0 and x−1=0