wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equation to the pair of transverse common tangents to the circles x2+y24x10y+28=0andx2+y2+4x6y+4=0

Open in App
Solution

Equations of given circles are,
Sx2+y24x10y+28=0 ------ ( 1 )
Sx2+y2+4x6y+4=0 ------- ( 2 )
Centers(g,f): C1(2,5),C2(2,3)
Radius(r)=g2+f2c
r1=22+5228=4+2528=1
r2=22+324=4+94=9=3
Internal center of similutute divides C1C2
Internally in the ratio r1:r2=1:3=m:n
P=[mx2+nx1m+n,my2+ny1m+n]=(1(2)+3(2)1+3,1(3)+3(5)1+3)
=(44,184)=(1,92)
let m be the slope of common tangent
Equation of tangent is (yy1)m=(xx1)p(1,92)
(y92)=m(x1)(2y9)2=m(x1)
2mx2y2m+9=0 ------- ( 1 )
Condition for tangent r=r distance
r1=r distance from C1(2,5) to (1)
d=|ax1+by1+c|a2+b2|2m(2)2(5)2m+9|(2m)2+(2)2=1
|2m1|4m2+4=1 S.O.B.S
(2m1)2=4m2+4
4m2+14m=4m2+4 {m==10
3=4m or m=34
Equation of tangents are,
(y92)=10(x1)x1=0
And (y92)=34(x1)
4y18=3x+3
3x+4y21=0
3x+4y21=0 and x1=0




flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Point Slope Form of a Straight Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon