3x−4y=6.......(i)2x+3y=12x=1−3yx=1−3y2
Substituting x in (i), we get
3(1−3y2)−4y=63−9y−8y=12−17y=9y=−917
Now, x=1−3y2
⇒x=1−3(−917)2=1+27172=2217
So the point of intersection is P(2217,−917)
Equation of line joining (3,2) and P is
y−2=⎛⎜ ⎜ ⎜⎝−917−22217−3⎞⎟ ⎟ ⎟⎠(x−3)y−2=⎛⎜ ⎜ ⎜⎝−4317−2917⎞⎟ ⎟ ⎟⎠(x−3)y−2=4329(x−3)
43x−29y=71.