9x2+16y2=1449x2144+16y2144=1x216+y29=1a=4,b=3a>b
So, the major axis of ellipse is x axis.
End points of latus rectum are (ae,±b2a) and (−ae,±b2a)
Combining both we can say all the ends point are (±ae,±b2a)
e2=1−b2a2=1−916=716⇒e=√74ae=4.√74=√7b2a=94
So the end point of latus rectum are (±√7,±94)
Equation of tangent
xx′a2+yy′b2=1
±√7x16+±94y9=1±√7x16±y4=1±√7x±4y=16
Slope of tangent m=±√74
Let slope of normal =m′
mm′=−1
⇒m′=∓4√7
Equation of normal
y±94=∓4√7(x±√7)±4√7y±9√7=±16x±16√7±16x∓4√7y±7√7=0±4x∓√7y=7√74