5x2+3y2=137
Ordinate y=2
5x2+12=1375x2=125⇒x=5
Point on the ellipse is (5,2)
For finding the equation of tangent at any point (x′,y′) on ellipse, we replace x by xx′ and y by yy′
So the equation of tangent at (5,2) is
5(5x)+3(2y)=13725x+6y=137
Slope m=−256
Let slope of normal at this point be m′
mm′=−1−256m′=−1⇒m′=625
Equation of normal
y−2=625(x−5)25y−50=6x−306x−25y+20=0