Find the equation whose roots are (α+β)2and(α−β)2, where α and β are the roots of 2x2+2(m+n)x+(m2+n2)=0.
A
x2−4mnx−(m2+n2)2=0.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x2+2mnx−(m2−n2)2=0.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x2−4mnx−(m2−n2)2=0.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cx2−4mnx−(m2−n2)2=0. α+β=−(m+n),αβ=m2+n22 ∴(α−β)2=(α+β)2−4αβ=(m+n)2−2(m2+n2)=−(m−n)2 and (α+β)2=(m+n)2. ∴S=(α+β)2+(α−β)2=(m+n)2−(m−n)2=4mn P=(α+β)2(α−β)2 =−(m+n)2(m−n)2=−(m2−n2)2 ∴ Required equation is x2−4mnx−(m2−n2)2=0.