The correct option is
A 2x+y−3=0Given, 4x+3y=7 and 24x+7y−31=0
Here, A1=4, B1=3, C1=7, A2=24, B2=7, C2=−31
Equation of angle bisector of lines is
∣∣
∣
∣∣A1x+B1y+C1√A21+B21∣∣
∣
∣∣ =±∣∣
∣
∣∣A2x+B2y+C2√A22+B22∣∣
∣
∣∣
4x+3y−7=0 and 24x+7y−31=0 is
∣∣
∣∣4x+3y−7√42+32∣∣
∣∣=±∣∣
∣
∣∣24x+7y−31√(24)2+72∣∣
∣
∣∣
⇒∣∣∣4x+3y−75∣∣∣=±∣∣∣24x+7y−3125∣∣∣
As −7 and −31 are of same sign and a1a2+b1b2=4.24+3.7>0
Then equation containing acute angle is
∣∣∣4x+3y−75∣∣∣=−∣∣∣24x+7y−3125∣∣∣
⇒20x+15y−35=−24x−7y+31
⇒44x+22y−66=0⇒2x+y−3=0