Let the centre be (h,k)
(x−h)2+(y−k)2=1
or (1−h)2+(1−k)2=1
(2−h)2+(2−k)2=1, subtract
(3−2h)⋅1+(3−2k)⋅1=0
or h+3=3∴k=3−h
(1−h)2+(1−3+h)2=1
or (1−h)2+(h−2)2=1
2h2−6h+4=0orh2−3h+2=0
or h=1,2∴k=2,1
centres are (1,2) or (2,1) and radius = 1
Ans (x−1)2+(y−2)2=1
(x−2)2+(y−1)2=1