(a) y=x2+4x+1
dydx=2x+4
[dydx](−1,−2)=2×−1+4=−2+4=2
∴Slope of the tangent=2
Equation of the tangent is y−(−2)=2(x−(−1))
y+2=2(x+1)
y+2=2x+2
∴y=2x is the equation of the tangent.
Slope of the normal=−12
Equation of the normal is y−(−2)=−12(x−(−1))
2y+4=−(x+1)
2y+4+x+1=0
∴x+2y+5=0 is the equation of the normal.
(b)2x2+3y2−5=0
⇒4x+6ydydx=0
⇒6ydydx=−4x
⇒dydx=−4x6y=−2x3y
[dydx](1,1)=−2×13×1=−23
∴Slope of the tangent=−23
Equation of the tangent is y−1=−23(x−1)
3y−3=−2x+2
or 2x+3y−5=0 is the equation of the tangent.
The slope of the normal=32
Equation of the normal is y−1=32(x−1)
2y−2=3x−3
3x−2y−1=0
∴3x−2y−1=0 is the equation of the normal.
(c)x=acos3θ,y=asin3θ
dxdθ=−3acos2θsinθ,dydθ=3asin2θcosθ
⇒dydx=dydθdxdθ=3asin2θcosθ−3acos2θsinθ=−tanθ
⇒[dydx]θ=π4=−tanπ4=−1
∴Slope of the tangent=−1
Equation of the tangent is y−asin3θ=−1(x−acos3θ)
or x+y=a(sin3θ+cos3θ)
or x+y=a(sinθ+cosθ)(sin2θ+cos2θ−sinθcosθ)
or x+y=a(sinθ+cosθ)(1−sinθcosθ)
∴Slope of the normal=1
Equation of the normal is y−asin3θ=1(x−acos3θ)
or x−y=a(sin3θ−cos3θ)
or x−y=a(sinθ−cosθ)(sin2θ+cos2θ+sinθcosθ)
or x−y=a(sinθ−cosθ)(1+sinθcosθ)