wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equations of tangent and normal to the curves at the indicated point on it.
(a) y=x2+4x+1 at (1,2)
(b) 2x2+3y25=0 at (1,1)
(c) x=acos3θ,y=asin3θatθ=π4

Open in App
Solution

(a) y=x2+4x+1

dydx=2x+4

[dydx](1,2)=2×1+4=2+4=2

Slope of the tangent=2

Equation of the tangent is y(2)=2(x(1))

y+2=2(x+1)

y+2=2x+2

y=2x is the equation of the tangent.
Slope of the normal=12

Equation of the normal is y(2)=12(x(1))

2y+4=(x+1)

2y+4+x+1=0

x+2y+5=0 is the equation of the normal.


(b)2x2+3y25=0

4x+6ydydx=0

6ydydx=4x

dydx=4x6y=2x3y

[dydx](1,1)=2×13×1=23

Slope of the tangent=23

Equation of the tangent is y1=23(x1)

3y3=2x+2

or 2x+3y5=0 is the equation of the tangent.
The slope of the normal=32

Equation of the normal is y1=32(x1)

2y2=3x3

3x2y1=0

3x2y1=0 is the equation of the normal.


(c)x=acos3θ,y=asin3θ

dxdθ=3acos2θsinθ,dydθ=3asin2θcosθ

dydx=dydθdxdθ=3asin2θcosθ3acos2θsinθ=tanθ

[dydx]θ=π4=tanπ4=1

Slope of the tangent=1

Equation of the tangent is yasin3θ=1(xacos3θ)

or x+y=a(sin3θ+cos3θ)

or x+y=a(sinθ+cosθ)(sin2θ+cos2θsinθcosθ)

or x+y=a(sinθ+cosθ)(1sinθcosθ)

Slope of the normal=1

Equation of the normal is yasin3θ=1(xacos3θ)

or xy=a(sin3θcos3θ)

or xy=a(sinθcosθ)(sin2θ+cos2θ+sinθcosθ)

or xy=a(sinθcosθ)(1+sinθcosθ)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon