wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equations of the common tangents to the parabolas y=x25x+6andy=x2+x+1.

Open in App
Solution

x25x+6=y=f(x)
x2+x+1=y=g(x)
y=mx+c=tangent
f(x1)=2x15=m
f(x2)=2x2+1=m
2x15.2x2+1
x1x2=3x1=x2+3
y1=x215x1+6
y2=x22+x+1
=(x13)+x13+7
=x215x1+7

y1=mx1+c
y1=(2x15)x1+c
x215x1+6=2x215x+c
C=6x21
also, y2=mx2+c
x215x1+7=(2x15)(x13)+c
x215x1+7=2x2111x1+5+6x21
6x1=14
x1=73,x2=23
commontangent=y=13x+59

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sound Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon