tanθ=∣∣∣m2−m11−m2m1∣∣∣
x=2y+4
⇒y=x2−2
⇒m1=12
1=∣∣ ∣ ∣∣m2−121−m212∣∣ ∣ ∣∣
∴m2−121−m212=±1
Solving for m2 we get,
m2=2,−12
(y−y1)=m(x−x1)
(y−2)=2(x−3) (y−2)=−12(x−3)
y−2=2x−6 2y−4=x−3
y−2x+4=0 2y−x+1=0
Hence required equations of line are y−2x+4=0 or 2y−x+1=0