x2a2−y2b2=1
Differentiating. w.r.t. x, we get
2xa2−2yb2.dydx=0⇒dydx=b2xa2y
At (√2a,b),dydx=b2a2.√2ab=√2ba
∴ Equation of tangent at (√2a,b) is
y−b=√2ba(x−√2a)
⇒ay−ab=√2bx−2ab⇒√2bx−ay−ab=0
Slope of normal=−1Slope of tangent=−1√2ba=−a√2b
Equation of normal at (√2a,b) is
y−b=−a√2b(x−√2a)
⇒√2by−√2b2=−ax+√2a2
⇒ax+√2by−√2(a2+b2)=0