Given curve,
x23+y23=2
Differentiating w.r.t. x,
23x⎛⎝23−1⎞⎠+23y⎛⎝23−1⎞⎠dydx=0
⇒23x−13+⇒23y−13dydx=0
⇒y−13dydx=−x−13
⇒dydx=−(yx)13
Slope of tangent at (1,1) is :
dydx=−(11)13=−1
We know,
Slope of the normal=−1Slope of the tangent=1
Now, equation of tangent at (1,1) is y−1=dydx(x−1)
⇒y−1=−1(x−1)
∴x+y=2
Equation of normal at (1,1) is :
⇒y−1=1(x−1)
∴y=x
Hence, equation of tangent is
y+x−2=0
and equation of normal is
y−x=0.