Given:
The curve, 16x2+9y2=145 ..... (i)
(x1,y1) is a point on (i)
∴ 16x21+9y21=145
If x1=2, then
16(2)2+9y21=145
9y21=145−64
y21=819=9
y1=3 [∵y1>0]
∴ The point (2,3) lies on (i).
Differentiating eqn. (i) w.r.t. x, we have
32x+18y⋅dydx=0
⇒dydx=−32x18y
dydx]at (2,3)=−32×218×3=−3227
Thus, Slope of the tangent =−3227
Slope of normal = −1Slope of tangent
So, Slope of the normal =2732.
Now, equation of the tangent at (2,3) is :
y−3=−3227(x−2)
27y−81=−32x+64
⇒32x+27y−145=0
Equation of the normal at (2,3) is :
y−3=2732(x−2)
32y−96=27x−54
⇒27x−32y+42=0