wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equations of the tangent and the normal to the following curves at the indicated points.

(i) y = x4 − bx3 + 13x2 − 10x + 5 at (0, 5)
(ii) y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1
(iii) y = x2 at (0, 0)
(iv) y = 2x2 − 3x − 1 at (1, −2)
(v) y2=x34-xat 2, -2
(vi) y = x2 + 4x + 1 at x = 3
(vii) x2a2+y2b2=1 at a cos θ, b sin θ
(viii) x2a2-y2b2=1 at a sec θ, b tan θ
(ix) y2 = 4a x at (a/m2, 2a/m)
(x) c2 x2+y2=x2 y2 at ccos θ, csin θ
(ix) xy = c2 at (ct, c/t)
(xii) x2a2+y2b2=1 at x1, y1
(xiii) x2a2-y2b2=1 at x0, y0
(xiv) x2/3 + y2/3 = 2 at (1, 1)
(xv) x2 = 4y at (2, 10
(xvi) y2 = 4x at (1, 2)
(xvii) 4x2 + 9y2 = 36 at (3 cos θ, 2 sin θ)

Open in App
Solution

(i)
y=x4-bx3+13x2-10x+5Differentiating both sides w.r.t. x,dydx=4x3-3bx2+26x-10Slope of tangent, m = dydx0, 5=-10Given x1, y1=0, 5Equation of tangent is,y-y1=m x-x1y-5=-10x-0y-5=-10xy+10x-5=0


Equation of normal is,y-y1=-1m x-x1y-5=110 x-010y-50=xx-10y+50=0

(ii)
y=x4-6x3+13x2-10x+5When x=1 , y=1-6+13-10+5=3So, x1, y1=1, 3Now, y=x4-6x3+13x2-10x+5Differentiating both sides w.r.t. x,dydx=4x3-18x2+26x-10Slope of tangent, m = dydx1,3=4-18+26-10=2Equation of tangent is,y-y1=2 x-x1y-3=2x-1y-3=2x-22x-y+1=0

Equation of normal is,y-y1=-1m x-x1y-3=-12 x-13y-6=-x+1x+3y-7=0


(iii)
y=x2Differentiating both sides w.r.t. x,dydx=2xGiven x1, y1=0, 0Slope of tangent, m = dydx0, 0=2 0=0Equation of tangent is,y-y1=mx-x1y-0=0 x-0y=0

Equation of normal is,y-y1=-1m x-x1y-0=-10 x-0x=0

(iv)
y=2x2-3x-1Differentiating both sides w.r.t. x,dydx=4x-3Given x1, y1=1, -2Slope of tangent, m = dydx1, -2=4-3=1Equation of tangent is,y-y1=mx-x1y+2=1 x-1y+2=x-1x-y-3=0

Equation of normal is,y-y1=-1m x-x1y+2=-1 x-1y+2=-x+1x+y+1=0

(v)
y2=x34-xDifferentiating both sides w.r.t. x,2y dydx=4-x3x2-x3-14-x2=12x2-3x3+x34-x2=12x2-2x34-x2dydx=12x2-2x32y 4-x2Given x1, y1=2, -2Slope of tangent, m = dydx2, -2=48-16-16=-2Equation of tangent is,y-y1=mx-x1y+2=-2 x-2y+2=-2x+42x+y-2=0

Equation of normal is,y-y1=-1m x-x1y+2=12 x-22y+4=x-2x-2y-6=0

(vi)
y=x2+4x+1Differentiating both sides w.r.t. x,dydx=2x+4When x =3, y=9+12+1=22 So, x1, y1=3, 22Slope of tangent, m = dydxx=3=10Equation of tangent is,y-y1=m x-x1y-22=10x-3y-22=10x-3010x-y-8=0


Equation of normal is,y-y1=-1m x-x1y-22=-110 x-310y-220=-x+3x+10y-223=0

(vii)
x2a2+y2b2=1Differentiating both sides w.r.t. x,2xa2+2yb2dydx=02yb2dydx=-2xa2dydx=-xb2ya2Slope of tangent, m = dydxa cos θ, b sin θ=-a cos θ b2b sin θ a2=-b cos θa sin θGiven x1, y1=a cos θ, b sin θEquation of tangent is,y-y1=m x-x1y-b sin θ=-b cos θa sin θx-a cos θay sin θ-ab sin2 θ=-bx cos θ+ab cos2 θbx cos θ+ay sin θ=abDividing by ab,xacos θ +ybsin θ=1

Equation of normal is,y-y1=-1m x-x1y-b sin θ=a sin θb cos θx-a cos θby cos θ-b2sin θ cos θ=ax sin θ-a2sin θ cos θax sin θ-by cos θ=a2-b2sin θ cos θDividing by sin θ cos θ,ax sec θ-by cosec θ=a2-b2

(viii)
x2a2-y2b2=1Differentiating both sides w.r.t. x,2xa2-2yb2dydx=02yb2dydx=2xa2dydx=xb2ya2Slope of tangent, m = dydxa sec θ, b tan θ=a sec θ b2b tan θ a2=b a sin θGiven x1, y1=a sec θ, b tan θEquation of tangent is,y-y1=m x-x1y-b tan θ=b a sin θx-a sec θay sin θ -ab sin2θcos θ=bx-abcos θay sin θ cos θ-ab sin2θcos θ=bx cos θ -abcos θay sin θ cos θ-ab sin2θ=bx cos θ -abbx cos θ-ay sin θ cos θ=ab 1-sin2 θ bx cos θ-ay sin θ cos θ=ab cos2θDividing by ab cos2 θ,xasec θ -ybtan θ=1

Equation of normal is,y-y1=-1m x-x1y-b tan θ=-a sin θbx-a sec θyb-b2tan θ=-ax sin θ+a2 tanθax sin θ+by=a2+b2tan θDividing by tan θ,ax cos θ+by cot θ=a2+b2

(ix)
y2=4axDifferentiating both sides w.r.t. x,2y dydx=4adydx=2ayGiven x1, y1=am2, 2amSlope of tangent = dydxam2, 2am=2a2am=mEquation of tangent is,y-y1=m x-x1y-2am=m x-am2my-2am=mm2x-am2my-2a=m2x-am2x-my+a=0

Equation of normal is,y-y1=1Slope of tangent x-x1y-2am=-1mx-am2my-2am=-1mm2x-am2m3y-2am2=-m2x+am2x+m3y-2am2-a=0

(x)
c2x2+y2=x2y2Differentiating both sides w.r.t. x,2x c2+2y c2dydx=x2 2y dydx+2xy2dydx2y c2-2x2y=2xy2-2xc2dydx=xy2-xc2yc2-x2ySlope of tangent, m = dydxccos θ, csin θ=c3cos θ sin2θ -c3cos θc3sinθ-c3cos2θ sinθ=1-sin2θcosθ sin2θcos2θ-1cos2θ sinθ=cos2θcos θ sin2θ×cos2θ sinθ-sin2θ=-cos3θsin3θGiven x1, y1=ccos θ, csin θEquation of tangent is,y-y1=m x-x1y-csin θ=-cos3θsin3θ x-ccos θysinθ-csinθ=-cos3θsin3θx cosθ-ccosθsin2θy sinθ -c=-cos2θxcosθ-cysin3θ-csin2θ=-xcos3θ+ccos2θxcos3θ+ysin3θ=csin2θ+cos2θxcos3θ+ysin3θ=c

Equation of normal is,y-y1=-1m x-x1y-csin θ=sin3θcos3θx-ccos θcos3θy-csin θ=sin3θx-ccos θycos3θ-c cos3θsinθ=xsin3θ-c sin3θcosθxsin3θ-ycos3θ=c sin3θcosθ-c cos3θsinθxsin3θ-ycos3θ=csin4θ-cos4θcosθ sinθxsin3θ-ycos3θ=csin2θ+cos2θsin2θ-cos2θcosθ sinθsin3θ-ycos3θ=2c-cos2θ-sin2θ2cosθ sinθsin3θ-ycos3θ=2c-cos 2θsin2θsin3θ-ycos3θ=-2c cot2θsin3θ-ycos3θ+2c cot2θ=0

(xi)
xy=c2Differentiating both sides w.r.t. x,xdydx+y=0dydx=-yxGiven x1, y1=ct, ctSlope of tangent, m = dydxct, ct=-ctct=-1t2Equation of tangent is,y-y1=m x-x1y-ct=-1t2 x-ctyt-ct=-1t2 x-ctyt2-ct=-x+ctx+yt2=2ct

Equation of normal is,y-y1=-1m x-x1y-ct=t2x-ctyt-c=t3x-ct4xt3-yt=ct4-c

(xii)
x2a2+y2b2=1Differentiating both sides w.r.t. x,2xa2+2yb2dydx=02yb2dydx=-2xa2dydx=-xb2ya2Slope of tangent, m = dydxx1, y1=-x1b2y1a2Equation of tangent is,y-y1=m x-x1y-y1=-x1b2y1a2x-x1yy1a2-y12a2=-xx1b2+x12b2xx1b2+yy1a2=x12b2+y12a2 ... 1Since x1, y1 lies on the given curve.Therefore,x12a2+y12b2=1x12b2+y12a2a2b2=1x12b2+y12a2=a2b2Substituting this in (1), we getxx1b2+yy1a2=a2b2Dividing this by a2b2,xx1a2+yy1b2=1

Equation of normal is,y-y1=m x-x1y-y1=y1a2x1b2x-x1yx1b2-x1y1b2=xy1a2-x1y1a2xy1a2-yx1b2=x1y1a2-x1y1b2xy1a2-yx1b2=x1y1a2-b2Dividing by x1y1a2xx1-b2yy1=a2-b2

(xiii)
x2a2-y2b2=1Differentiating both sides w.r.t. x,2xa2-2yb2dydx=02yb2dydx=2xa2dydx=xb2ya2Slope of tangent, m = dydxx0, y0=x0b2y0a2Equation of tangent is,y-y1=m x-x1y-y0=x0b2y0a2x-x0yy0a2-y02a2=xx0b2-x02b2xx0b2-yy0a2=x02b2-y02a2 ... 1Since x0, y0 lies on the given curve,x02a2-y02b2=1x02b2-y02a2=a2b2Substituting this in (1), we getxx0b2-yy0a2=a2b2Dividing this by a2b2xx0a2-yy0b2=1

Equation of normal is,y-y1=m x-x1y-y0=-y0a2x0b2x-x0yx0b2-x0y0b2=-xy0a2+x0y0a2xy0a2+yx0b2=x0y0a2+x0y0b2xy0a2+yx0b2=x0y0a2+b2Dividing by x0y0a2xx0+b2yy0=a2+b2

(xiv)
x23+y23=2Differentiating both sides w.r.t. x,23x-13+23y-13dydx=0dydx=-x-13y-13=-y13x13Slope of tangent, m = dydx1, 1= -11=-1Given x1, y1=1, 1Equation of tangent is,y-y1=m x-x1y-1=-1x-1y-1=-x+1x+y-2=0

Equation of normal is,y-y1=-1m x-x1y-1=1x-1y-1=x-1y-x=0

(xv)
x2=4yDifferentiating both sides w.r.t. x,2x=4dydxdydx=x2Slope of tangent, m = dydx2, 1=22=1Given x1, y1=2, 1Equation of tangent is,y-y1=m x-x1y-1=1x-2y-1=x-2x-y-1=0

Equation of normal is,y-y1=-1m x-x1y-1=-1x-2y-1=-x+2x+y-3=0

(xvi)
y2=4xDifferentiating both sides w.r.t. x,2y dydx=4dydx=2ySlope of tangent, m = dydx1, 2=22=1Given x1, y1=1, 2Equation of tangent is,y-y1=m x-x1y-2=1x-1y-2=x-1x-y+1=0

Equation of normal is,y-y1=-1m x-x1y-2=-1x-1y-2=-x+1x+y-3=0

(xvii) Equation of tangent:
4x2+9y2=36Differentiating both sides w.r.t. x,8x+18y dydx=018y dydx=-8xdydx=-8x18y=-4x9ySlope of tangent, m = dydx3 cosθ, 2 sinθ=-12cosθ18sinθ=-2 cosθ3 sinθGiven x1, y1=3 cosθ, 2 sinθEquation of tangent is,y-y1=m x-x1y-2 sinθ=-2 cosθ3 sinθx-3 cosθ3y sinθ-6sin2θ=-2x cosθ+6cos2θ2x cosθ+3y sinθ=6cos2θ+sin2θ2x cosθ+3y sinθ=6

Equation of normal is,y-y1=-1m x-x1y-2 sinθ=3 sinθ2 cosθx-3 cosθ2y cosθ-4 sinθ cosθ=3x sinθ-9 sinθ cosθ3x sinθ-2y cosθ-5sinθ cosθ=0

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon