1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Length of Subnormal
Find the equa...
Question
Find the equations of the tangent and the normal to the following curves at the indicated points.
(i)
x
= θ + sinθ,
y
= 1 + cosθ
at
θ =
π
2
(ii)
x
=
2
a
t
2
1
+
t
2
,
y
=
2
a
t
3
1
+
t
2
at
t
=
1
2
(iii)
x
=
at
2
,
y
= 2
at
at
t
= 1
(iv)
x
=
a
sec
t
,
y
=
b
tan
t
at
t
(v)
x
=
a
(θ + sinθ),
y
=
a
(1 − cosθ) at θ
(vi)
x
= 3cosθ − cos
3
θ
,
y
= 3sinθ − sin
3
θ
[NCERT EXEMPLAR]
Open in App
Solution
(i)
x
=
θ
+
sin
θ
and
y
=
1
+
cos
θ
d
x
d
θ
=
1
+
cos
θ
and
d
y
d
θ
=
-
sin
θ
∴
d
y
d
x
=
d
y
d
θ
d
x
d
θ
=
-
sin
θ
1
+
cos
θ
Slope of tangent,
m
=
d
y
d
x
θ
=
π
2
=
-
sin
π
2
1
+
cos
π
2
=
-
1
1
+
0
=-1
Now
,
x
1
,
y
1
=
π
2
+
sin
π
2
,
1
+
cos
π
2
=
π
2
+
1
,
1
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
1
=
-
1
x
-
π
2
-
1
⇒
2
y
-
2
=
-
2
x
+
π
+
2
⇒
2
x
+
2
y
-
π
-
4
=
0
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
1
=
1
x
-
π
2
-
1
⇒
2
y
-
2
=
2
x
-
π
-
2
⇒
2
x
-
2
y
=
π
(ii) Equation of tangent:
x
=
2
a
t
2
1
+
t
2
and
y
=
2
a
t
3
1
+
t
2
d
x
d
t
=
1
+
t
2
4
a
t
-
2
a
t
2
2
t
1
+
t
2
2
=
4
a
t
1
+
t
2
2
and
d
y
d
t
=
1
+
t
2
6
a
t
2
-
2
a
t
3
2
t
1
+
t
2
2
=
6
a
t
2
+
2
a
t
4
1
+
t
2
2
d
y
d
x
=
d
y
d
t
d
x
d
t
=
6
a
t
2
+
2
a
t
4
1
+
t
2
2
4
a
t
1
+
t
2
2
=
6
a
t
2
+
2
a
t
4
4
a
t
Slope of tangent,
m
=
d
y
d
x
t
=
1
2
=
3
a
2
+
a
8
2
a
=
12
a
+
a
8
2
a
=
13
a
8
×
1
2
a
=
13
16
Now
,
x
1
,
y
1
=
2
a
t
2
1
+
t
2
,
2
a
t
3
1
+
t
2
=
a
2
1
+
1
4
,
a
4
1
+
1
4
=
a
2
5
4
,
a
4
5
4
=
2
a
5
,
a
5
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
a
5
=
13
16
x
-
2
a
5
⇒
5
y
-
a
5
=
13
16
5
x
-
2
a
5
⇒
5
y
-
a
=
13
16
5
x
-
2
a
⇒
80
y
-
16
a
=
65
x
-
26
a
⇒
65
x
-
80
y
-
10
a
=
0
⇒
13
x
-
16
y
-
2
a
=
0
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
a
5
=
-
16
13
x
-
2
a
5
⇒
5
y
-
a
5
=
-
16
13
5
x
-
2
a
5
⇒
5
y
-
a
=
-
16
13
5
x
-
2
a
⇒
65
y
-
13
a
=
-
80
x
+
32
a
⇒
80
x
+
65
y
-
45
a
=
0
⇒
16
x
+
13
y
-
9
a
=
0
(iii)
x
=
a
t
2
and
y
=
2
a
t
d
x
d
t
=
2
a
t
and
d
y
d
t
=
2
a
∴
d
y
d
x
=
d
y
d
t
d
x
d
t
=
2
a
2
a
t
=
1
t
Slope of tangent,
m
=
d
y
d
x
t
=
1
=
1
1
=1
Now
,
x
1
,
y
1
=
a
,
2
a
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
2
a
=
1
x
-
a
⇒
y
-
2
a
=
x
-
a
⇒
x
-
y
+
a
=
0
Equation of normal:
Equation of normal is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
2
a
=
-
1
x
-
a
⇒
y
-
2
a
=
-
x
+
a
⇒
x
+
y
=
3
a
(iv)
x
=
a
sec
t
and
y
=
b
tan
t
d
x
d
t
=
a
sec
t
tan
t
and
d
y
d
t
=
b
sec
2
t
∴
d
y
d
x
=
d
y
d
t
d
x
d
t
=
b
sec
2
t
a
sec
t
tan
t
=
b
a
cos
e
c
t
Slope of tangent,
m
=
d
y
d
x
t
=
t
=
b
a
cos
e
c
t
Now
,
x
1
,
y
1
=
a
sec
t
,
b
tan
t
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
b
tan
t
=
b
a
cos
e
c
t
x
-
a
s
e
c
t
⇒
y
-
b
sin
t
cos
t
=
b
a
sin
t
x
-
a
cos
t
⇒
y
cos
t
-
b
sin
t
cos
t
=
b
a
sin
t
x
cos
t
-
a
cos
t
⇒
y
cos
t
-
b
sin
t
=
b
a
sin
t
x
cos
t
-
a
⇒
a
y
sin
t
cos
t
-
a
b
sin
2
t
=
b
x
cos
t
-
a
b
⇒
b
x
cos
t
-
a
y
sin
t
cos
t
-
a
b
1
-
sin
2
t
=
0
⇒
b
x
cos
t
-
a
y
sin
t
cos
t
=
a
b
cos
2
t
Dividing by
cos
2
t
,
b
x
sec
t
-
a
y
tan
t
=
a
b
Equation of normal is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
b
tan
t
=
-
a
b
sin
t
x
-
a
sec
t
⇒
y
-
b
sin
t
cos
t
=
-
a
b
sin
t
x
-
a
cos
t
⇒
y
cos
t
-
b
sin
t
cos
t
=
-
a
b
sin
t
x
cos
t
-
a
cos
t
⇒
y
cos
t
-
b
sin
t
=
-
a
b
s
in
t
x
cos
t
-
a
⇒
b
y
cos
t
-
b
2
sin
t
=
-
a
x
sin
t
cos
t
+
a
2
sin
t
⇒
a
x
sin
t
cos
t
+
b
y
cos
t
=
a
2
+
b
2
sin
t
Dividing both sides by sin
t,
a
x
cos
t
+
b
y
cot
t
=
a
2
+
b
2
(v)
x
=
a
θ
+
sin
θ
and
y
=
a
1
-
cos
θ
d
x
d
θ
=
a
1
+
cos
θ
and
d
y
d
θ
=
a
sin
θ
∴
d
y
d
x
=
d
y
d
θ
d
x
d
θ
=
a
sin
θ
a
1
+
cos
θ
=
sin
θ
1
+
cos
θ
=
2
sin
θ
2
cos
θ
2
2
cos
2
θ
2
=
tan
θ
2
.
.
.
1
Slope of tangent,
m
=
d
y
d
x
θ
=
tan
θ
2
Now
,
x
1
,
y
1
=
a
θ
+
sin
θ
,
a
1
-
cos
θ
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
a
1
-
cos
θ
=
tan
θ
2
x
-
a
θ
+
sin
θ
⇒
y
-
a
2
sin
2
θ
2
=
x
tan
θ
2
-
a
θ
tan
θ
2
-
a
tan
θ
2
sin
θ
⇒
y
-
a
2
sin
2
θ
2
=
x
tan
θ
2
-
a
θ
tan
θ
2
-
a
2
sin
θ
2
cos
θ
2
2
cos
2
θ
2
2
sin
θ
2
cos
θ
2
(From (1))
⇒
y
-
2
a
sin
2
θ
2
=
x
-
a
θ
tan
θ
2
-
2
a
sin
2
θ
2
⇒
y
=
x
-
a
θ
tan
θ
2
Equation of normal is,
y
-
a
1
-
cos
θ
=
-
cot
θ
2
x
-
a
θ
+
sin
θ
⇒
tan
θ
2
y
-
a
2
sin
2
θ
2
=
-
x
+
a
θ
+
a
sin
θ
⇒
tan
θ
2
y
-
a
2
1
-
cos
2
θ
2
=
-
x
+
a
θ
+
a
sin
θ
⇒
tan
θ
2
y
-
2
a
+
a
2
sin
θ
2
cos
θ
2
=
-
x
+
a
θ
+
asin
θ
⇒
tan
θ
2
y
-
2
a
+
a
sin
θ
=
-
x
+
a
θ
+
asin
θ
⇒
tan
θ
2
y
-
2
a
=
-
x
+
a
θ
⇒
tan
θ
2
y
-
2
a
+
x
-
a
θ
=
0
(vi)
x
=
3
cos
θ
-
cos
3
θ
and
y
=
3
sin
θ
-
sin
3
θ
d
x
d
θ
=
-
3
sin
θ
+
3
cos
2
θ
sin
θ
=
3
sin
θ
cos
2
θ
-
1
=
3
sin
θ
-
sin
2
θ
=
-
3
sin
3
θ
and
d
y
d
θ
=
3
cos
θ
-
3
sin
2
θ
cos
θ
=
3
cos
θ
1
-
sin
2
θ
=
3
cos
θ
cos
2
θ
=
3
cos
3
θ
∴
d
y
d
x
=
3
cos
3
θ
-
3
sin
3
θ
=
-
tan
3
θ
.
.
.
1
Slope of tangent,
m
=
d
y
d
x
θ
=
-
tan
3
θ
Now
,
x
1
,
y
1
=
3
cos
θ
-
cos
3
θ
,
3
sin
θ
-
sin
3
θ
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
3
sin
θ
-
sin
3
θ
=
-
tan
3
θ
x
-
3
cos
θ
-
cos
3
θ
⇒
y
-
3
sin
θ
-
sin
3
θ
=
-
sin
3
θ
cos
3
θ
x
-
3
cos
θ
-
cos
3
θ
⇒
y
cos
3
θ
-
3
sin
θ
cos
3
θ
-
sin
3
θ
cos
3
θ
=
-
x
sin
3
θ
+
3
sin
3
θ
cos
θ
+
sin
3
θ
cos
3
θ
⇒
x
sin
3
θ
+
y
cos
3
θ
=
3
sin
3
θ
cos
θ
+
3
sin
θ
cos
3
θ
+
2
sin
3
θ
cos
3
θ
⇒
x
sin
3
θ
+
y
cos
3
θ
=
3
sin
3
θ
cos
θ
sin
2
θ
+
cos
2
θ
+
2
sin
3
θ
cos
3
θ
⇒
x
sin
3
θ
+
y
cos
3
θ
=
3
sin
3
θ
cos
θ
+
2
sin
3
θ
cos
3
θ
⇒
x
+
y
cot
3
θ
=
3
cos
θ
+
2
cos
3
θ
Equation of normal is,
y
-
3
cos
θ
-
cos
3
θ
=
-
1
m
x
-
3
sin
θ
-
sin
3
θ
⇒
y
-
3
cos
θ
+
cos
3
θ
=
-
1
tan
3
θ
x
-
3
sin
θ
+
sin
3
θ
⇒
y
-
3
cos
θ
+
cos
3
θ
=
-
cos
3
θ
sin
3
θ
x
-
3
sin
θ
+
sin
3
θ
⇒
y
sin
3
θ
-
3
sin
3
θ
cos
θ
+
sin
3
θ
cos
3
θ
=
-
x
cos
3
θ
+
3
cos
3
θ
sin
θ
-
cos
3
θ
sin
3
θ
⇒
x
cos
3
θ
+
y
sin
3
θ
=
3
sin
3
θ
cos
θ
+
3
cos
3
θ
sin
θ
-
2
cos
3
θ
sin
3
θ
⇒
x
cos
3
θ
+
y
sin
3
θ
=
3
sin
3
θ
cos
θ
sin
2
θ
+
cos
2
θ
-
2
cos
3
θ
sin
3
θ
⇒
x
cos
3
θ
+
y
sin
3
θ
=
3
sin
3
θ
cos
θ
-
2
cos
3
θ
sin
3
θ
⇒
x
co
t
3
θ
+
y
=
3
cos
θ
-
2
cos
3
θ
Suggest Corrections
0
Similar questions
Q.
Find the equations of the tangent and the normal to the following curves at the indicated points.
(i) x = θ + sin θ, y = 1 + cos θ at θ = π/2
(ii)
x
=
2
a
t
2
1
+
t
2
,
y
=
2
a
t
3
1
+
t
2
at
t
=
1
/
2
(iii) x = at
2
, y = 2at at t = 1
(iv) x = a sec t, y = b tan t at t
(v) x = a (θ + sin θ), y = a(1 − cos θ) at θ
Q.
Find the equations of the tangent and normal at
θ
=
π
2
to the curve
x
=
a
(
θ
+
sin
θ
)
,
y
=
a
(
1
+
cos
θ
)
Q.
Find the slopes of the tangent and the normal to the following curves at the indicted points:
(i)
y
=
x
3
at
x
=
4
(ii)
y
=
x
at
x
=
9
(iii) y = x
3
− x at x = 2
(iv) y = 2x
2
+ 3 sin x at x = 0
(v) x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2
(vi) x = a cos
3
θ, y = a sin
3
θ at θ = π/4
(vii) x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2
(viii) y = (sin 2x + cot x + 2)
2
at x = π/2
(ix) x
2
+ 3y + y
2
= 5 at (1, 1)
(x) xy = 6 at (1, 6)
Q.
Find the slopes of the tangent and the normal to the following curves at the indicated points.
x
=
a
(
1
−
cos
θ
)
and
y
=
a
(
θ
+
sin
θ
)
at
θ
=
π
/
2
.
Q.
Find the slopes of the tangent and the normal to the following curve at the indicated point.
x
=
a
(
θ
−
sin
θ
)
,
y
=
a
(
1
+
cos
θ
)
at
θ
=
−
π
2
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Explore more
Length of Subnormal
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app