Find the equations of the tangents drawn to the curve y2−3x2−4y+8=0 from the point (1,2).
Open in App
Solution
2yy′−6x2−4y′=0⇒y′=3x21(y1−2) Also slope =y1−2(x1−1) Equating both terms 3x21(y1−2)=(y1−2)(x1−1) ⇒3x12(x1−1)=(y1−2)2 ⇒3x13−3x12=y12−4y1+4 ⇒3x13−3x12=(2x13−8)1+4 ⇒x13−3x12+4=0 ⇒(x1+1)(x12−4x1+4)=0 ⇒(x1+1)(x1−2)2=0 get the equation of tangent at x1=−1,x1=2