We have,
y2−2x3−4x+8=0
On differentiation and we get,
2ydydx−6x2−4+0=0
dydx=6x2+42
dydx=3x2+2
Slope at the point (1,2)
Then,
(dydx)(1,2)=3(1)2+2
(dydx)(1,2)=5
Then,
Equation of tangent is
y−y1=dydx(x−x1)
⇒y−2=5(x−1)
⇒y−2=5x−5
⇒y−5x+3=0
Hence, this is the
answer.