Given,
a circle equation as x2+y2−6x−4y+5=0
angle (θ)=45o
⇔tan45o=1
Also given, to find the equation of tangents.
Let,
x2+y2−6x−4y+5=0−−−(1)
Now,
Equation of tangents passing through P(a,b) is,
(y−b)=m(x−a)
(∵m=1)
⇒y−b=x−a
⇒x−y=b−a
⇒x−y−b+a=0
x−y+(b−a)=0
let it be eq (2)
here,
perpendicular distance from centre ′O′ to ′P′
radius (r)=√(2)2+(3)2−3=√4+9−3
R=√10.
⇒y=mx+c⇔∴m=1⇒y=x+C.
√10=|1(2)−1(3)+(b−a)|√1+1
√2.√10=|2−3+(b−a)|
√20=|(b−a)+2−3|
±√4×5=2+(b−a)−3
±2√5=−1+(b−a)
(b−a)=1±2√5−−− eq (3)
∴ we get equation of tangent,
put (b−a) value in eq (2) we get,
x−y−[1±2√5]=0
⇔x−y+(1+2√5)=0,x−y+(1−2√5)=0
∴ the tangents for circle x2+y2−6x−4y+5=0
are x−y+(1+2√5)=0 & x−y+(1−2√5)=0