Let the equation of straight line be y=mx+c
It passes through (0,a)
a=m(0)+c⇒c=ay=mx+a........(i)mx−y+a=0
Lenght of perpendicular from (2a,2a) is equal to a
|2am−2a+a|√1+m2=a|2am−a|=a√1+m24a2m2+a2−4a2m=a2+a2m23a2m2−4a2m=03m2−4m=0m(3m−4)=0⇒m=0,43
Substituting m in (i)
m=0
y=0(x)+ay=a
m=43
y=43x+a3y=4x+3a....(ii)
Slope of line perpendicular to (i) is
m′=−34
Equation of line passing (2a,2a) and slope m′ is
y−2a=−34(x−2a)4y−8a=−3x+6a3x+4y=14a......(iii)
Feet of perpendicular is point of intersection of (ii) and (iii)
Solving (ii) and (iii), we get
P(6a5,13a5)
Feet of perpendicular from (2a,2a) on y=a is
Q(2a,a)
Equation of PQ is
y−a=13a5−a6a5−2a(x−2a)y−a=−2(x−2a)y+2x=5a
Hence proved.