3x+5y=15......(i)x+y=4.....(ii)a1a2+b1b2=3(1)+5(1)=8>0
So the first internal angle bisector is
3x+5y−15√33+52=±x+y−4√12+123x+5y−15√34=−x+y−4√23x+5y−15=−√17(x+y−4)(3+√17)x+(5+√17)y=4√17+15
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x+y=4....(ii)2x+y=6......(iii)a1a2+b1b2=1(2)+1(1)=3>0
So, the second internal angle bisector is
x+y−4√12+12=−2x+y−6√22+12√5(x+y−4)=−√2(2x+y−6)(√5+2√2)x+(√5+√2)y=6√2+4√5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2x+y=6....(iii)3x+5y=15.....(i)a1a2+b1b2=2(3)+1(5)=11>0
So the third internal angle bisector is
2x+y−6√22+12=−3x+5y−15√32+52√34(2x+y−6)=−√5(3x+5y−15)(2√34+3√5)x+(√34+5√5)y=15√5+6√34