Let the center of the circle be (h,k)
Since the line joining the points (a,b) and (b,−a) subtends 45o on the circumference, the chord will subtend 90o at the center of the circle.
⇒k−bh−a×k+ah−b=−1
⇒k2−bk+ak−ab=−h2+ah+bh−ab
⇒k2+h2+k(a−b)−h(a+b)=0 ..(1)
Also, (h−a)2+(k−b)2=(h−b)2+(k+a)2
⇒h2−2ah+a2+k2−2bk+b2=h2−2bh+b2+k2+2ak+a2
⇒−2ah−2bk=−2bh+2ak
⇒(b−a)h−(b+a)k=0 ...(2)
From equations (1) and (2), the value of (h,k) can be (0,0) or (a+b,b−a)
The equation of circles can therefore be written as x2+y2=a2+b2
or (x−(a+b))2+(y−(b−a))2=[(a+b−a)2+(b−a−b)2]
∴x2−2(a+b)x+(a+b)2+y2−2(b−a)y+(b−a)2=a2+b2
i.e. x2−2(a+b)x+y2−2(b−a)y+a2+b2=0