The equation of tangent to y2=4ax is
y=mx+am.......(i)
It is also a tangent to x2=4by
x2=4b(mx+am)mx2=4b(m2x+a)mx2−4bm2x−4ab=0
The roots of this equation are equal as it touch the parabola
∴D=(−4bm2)2−4m(−4ab)=016b2m4+16abm=016mb(bm3+a)=0⇒m=−(ab)13
Substituting m in (i), we get
y=−(ab)13x+a−(ab)13y=−(ab)13x−a(ba)13y=−(ab)13x−b13a23b13y=−a13x−a23b23a13x+b13y+a23b23=0