L1:12x+4y−4=0L2:3x+4y+7=0L1(0,0)=12(0)+4(0)−4=−4L2(0,0)=3(0)+4(0)+7=7L1(0,0)×L2(0,0)=−4×7=−28L1(0,0)×L2(0,0)<0
So the angle bisector in which the origin lies is
a1x+b1y+c1√a21+b21=−a2x+b2y+c2√a22+b2212x+5y−4√(12)2+52=−3x+4y+7√32+4212x+5y−413=−3x+4y+755(12x+5y−4)=−13(3x+4y+7)60x+25y−20=−39x−52y−9199x+77y+71=0
Other angle bisector is
a1x+b1y+c1√a21+b21=a2x+b2y+c2√a22+b2212x+5y−4√(12)2+52=3x+4y+7√32+4212x+5y−413=3x+4y+755(12x+5y−4)=13(3x+4y+7)60x+25y−20=39x+52y+9121x−27y−111=07x−9y−37=0