L1:x+√3y−2√3−6=0L2:x−√3y+2√3−6=0L1(0,0)=0+√3(0)−2√3−6=−2√3−6L2(0,0)=0−√3(0)+2√3−6=2√3−6L1(0,0)×L2(0,0)=−(2√3+6)(2√3−6)=−(12−36)=24L1(0,0)×L2(0,0)>0
So the equation of angle bisector containing origin is
a1x+b1y+c1√a21+b21=a2x+b2y+c2√a22+b22x+√3y−2√3−6√12+(√3)2=x−√3y+2√3−6√(√3)2+12x+√3y−2√3−6=x−√3y+2√3−62√3y−4√3=0y−2=0y=2
Equation of other angle bisector is
a1x+b1y+c1√a21+b21=−a2x+b2y+c2√a22+b22x+√3y−2√3−6√12+(√3)2=−x−√3y+2√3−6√(√3)2+12x+√3y−2√3−6=−x+√3y−2√3+62x−12=0x−6=0x=6