wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equations to the straight lines bisecting the angles between the following pairs of straight lines, placing first the bisector of the angle in which the origin lies.
yb=2m1m2(xa) and yb=2m1m2(xa)

Open in App
Solution

Equation of lines are

yb=2m1m2(xa)2mx(1m2)y+{b(1m2)2am}=0......(i)yb=2m1m2(xa)2mx(1m2)y+{b(1m2)2am}......(ii)
2mx(1m2)y+{b(1m2)2am}(2m)2+(1m2)2=±2mx(1m2)y+{b(1m2)2am}(2m)2+(1m2)22mx(1m2)y+{b(1m2)2am}1+m2=±2mx(1m2)y+{b(1m2)2am}1+m2

Taking the positive sign we get

2x(m+m2mmm2)y{(1m2)(1+m2)(1m2)(1+m2)}+

b{(1m2)(1+m2)(1m2)(1+m2)}2a(m+m2mmm2))=0

2x(mm)(1mm)2y(mm)(m+m)+2b(mm)(m+m)2a(mm)(1mm)=0(1mm)(xa)+(m+m)(yb)=0

Similarly taking the negative sign we get

(yb)(1mm)(xa)(m+m)=0

Hence proved


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Representation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon