Equation of lines are
y−b=2m1−m2(x−a)2mx−(1−m2)y+{b(1−m2)−2am}=0......(i)y−b=2m′1−m′2(x−a)2m′x−(1−m′2)y+{b(1−m′2)−2am′}......(ii)
2mx−(1−m2)y+{b(1−m2)−2am}√(2m)2+(1−m2)2=±2m′x−(1−m′2)y+{b(1−m′2)−2am′}√(2m′)2+(1−m′2)22mx−(1−m2)y+{b(1−m2)−2am}1+m2=±2m′x−(1−m′2)y+{b(1−m′2)−2am′}1+m′2
Taking the positive sign we get
2x(m+m′2−m′−m′m2)−y{(1−m2)(1+m′2)−(1−m′2)(1+m2)}+
b{(1−m2)(1+m′2)−(1−m′2)(1+m2)}−2a(m+m′2−m′−m′m2))=0
2x(m−m′)(1−mm′)−2y(m′−m)(m′+m)+2b(m′−m)(m′+m)−2a(m−m′)(1−mm′)=0(1−mm′)(x−a)+(m+m′)(y−b)=0
Similarly taking the negative sign we get
(y−b)(1−mm′)−(x−a)(m+m′)=0
Hence proved