.L1:2x+y−4=0L2:y+3x−5=0L1(0,0)=2(0)+0−4=−4L2(0,0)=0+3(0)−5=−5L1(0,0)×L2(0,0)=−4×−5=20⇒L1(0,0)×L2(0,0)>0
So the angle angle bisector in which origin lies is
a1x+b1y+c1√a21+b21=a2x+b2y+c2√a22+b22
2x+y−4√22+12=y+3x−5√32+122x+y−4√5=y+3x−5√10√2(2x+y−4)=y+3x−5(2√2−3)x+(√2−1)y+5−4√2=0
The other angle bisector is
a1x+b1y+c1√a21+b21=−a2x+b2y+c2√a22+b222x+y−4√22+12=−y+3x−5√32+122x+y−4√5=−y+3x−5√10√2(2x+y−4)=−(y+3x−5)(2√2+3)x+(√2+1)y−5−4√2=0