L1:4x+3y−7=0L2:24x+7y−31=0L1(0,0)=4(0)+3(0)−7=−7L2(0,0)=24(0)+7(0)−31=−31L1(0,0)×L2(0,0)=−7×−31=217L1(0,0)×L2(0,0)>0
So, the angle bisector is
a1x+b1y+c1√a21+b21=a2x+b2y+c2√a22+b224x+3y−7√42+32=24x+7y−31√(24)2+724x+3y−75=24x+7y−31255(4x+3x−7)=24x+7y−3120x+15y−35=24x+7y−314x−8y+4=0x−2y+1=0
The other angle bisector is
a1x+b1y+c1√a21+b21=−a2x+b2y+c2√a22+b224x+3y−7√42+32=−24x+7y−31√(24)2+724x+3y−75=−24x+7y−31255(4x+3y−7)=−(24x+7y−31)20x+15y−35=−24x−7y+3144x+22y−66=02x+y−3=0