Equation of line joining (acosϕ1,bsinϕ1) and (acosϕ2,bsinϕ2) is
y−bsinϕ1=(bsinϕ2−bsinϕ1acosϕ2−acosϕ1)(x−acosϕ1)
y−bsinϕ1=ba(sinϕ2−sinϕ1cosϕ2−cosϕ1)(x−acosϕ1)
Since, cosC−cosD=2sinC+D2sinD−C2 and sinC−sinD=2cosC+D2sinC−D2
∴y−bsinϕ1=ba⎛⎜ ⎜ ⎜⎝2cosϕ2+ϕ12sinϕ2−ϕ12−2sinϕ2+ϕ12sinϕ2−ϕ12⎞⎟ ⎟ ⎟⎠(x−acosϕ1)
y−bsinϕ1=−ba⎛⎜ ⎜ ⎜⎝cosϕ2+ϕ12sinϕ2+ϕ12⎞⎟ ⎟ ⎟⎠(x−acosϕ1)
asinϕ2+ϕ12y−absinϕ1sinϕ2+ϕ12=−bcosϕ2+ϕ12x+abcosϕ1cosϕ2+ϕ12
bxcosϕ2+ϕ12+aysinϕ2+ϕ12=ab(cosϕ1cosϕ2+ϕ12+sinϕ1sinϕ2+ϕ12)
bxcosϕ2+ϕ12+aysinϕ2+ϕ12=ab(cos(ϕ1−ϕ2+ϕ12))
bxcosϕ2+ϕ12+aysinϕ2+ϕ12=abcosϕ1−ϕ22
Dividing both sides by ab
xacosϕ2+ϕ12+ybsinϕ2+ϕ12=cosϕ1−ϕ22