wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the equations to the straight lines passing through the pairs of points. : (acosϕ1,bsinϕ1) and (acosϕ2,bsinϕ2).-

Open in App
Solution

Equation of line joining (acosϕ1,bsinϕ1) and (acosϕ2,bsinϕ2) is

ybsinϕ1=(bsinϕ2bsinϕ1acosϕ2acosϕ1)(xacosϕ1)

ybsinϕ1=ba(sinϕ2sinϕ1cosϕ2cosϕ1)(xacosϕ1)

Since, cosCcosD=2sinC+D2sinDC2 and sinCsinD=2cosC+D2sinCD2

ybsinϕ1=ba⎜ ⎜ ⎜2cosϕ2+ϕ12sinϕ2ϕ122sinϕ2+ϕ12sinϕ2ϕ12⎟ ⎟ ⎟(xacosϕ1)

ybsinϕ1=ba⎜ ⎜ ⎜cosϕ2+ϕ12sinϕ2+ϕ12⎟ ⎟ ⎟(xacosϕ1)

asinϕ2+ϕ12yabsinϕ1sinϕ2+ϕ12=bcosϕ2+ϕ12x+abcosϕ1cosϕ2+ϕ12

bxcosϕ2+ϕ12+aysinϕ2+ϕ12=ab(cosϕ1cosϕ2+ϕ12+sinϕ1sinϕ2+ϕ12)

bxcosϕ2+ϕ12+aysinϕ2+ϕ12=ab(cos(ϕ1ϕ2+ϕ12))

bxcosϕ2+ϕ12+aysinϕ2+ϕ12=abcosϕ1ϕ22

Dividing both sides by ab

xacosϕ2+ϕ12+ybsinϕ2+ϕ12=cosϕ1ϕ22


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Straight Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon