Find the equations to the straight lines passing through the point (2, 3) and inclined at an angle of 45∘ to the line 3x+y−5=0
We know that the equations of two lines passing through a point (x1,y1) and making an angle α with the given line y=mx+c are
y−y1=m±tan α1±m tan α(x−x1)
Here,
Equation of the given line is,
3x+y−5=0
⇒y=−3x+5
Comparing this equation with y=mx+c
we get,
m = -3
x1=2, y1=3, α=45∘, m=−3
So, the equations of the required lines are
y−3=−3+tan 45∘1+3 tan 45∘(x−2) and y−3
=−3−tan 45∘1−3 tan 45∘(x−2)
⇒y−3=−3+11+3(x−2) and y−3=−3−11−3(x−2)
⇒y−3=−12(x−2) and y−3=2(x−2)
⇒x+2y−8=0 and 2x−y−1=0
y−3=−3+tan 45∘1+3 tan 45∘(x−2) and y−3=−3−tan 45∘1−3 tan 45∘(x−2)