wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the exact value of:
(a) tan2π16+tan22π16+tan23π16+......+tan27π16
(b) (2+sec20ocosec20o)2

Open in App
Solution

(i) Given tan2π16+tan22π16+.......+tan27π16
We know that tanθ=cot(πθ)
By making Paris we get
(tan2π16+cot2π16)+(tan22π16+cot22π16)+(tan23π16+cot23π16)+tan2π4
using identify tan2x+cot2x=4csc22x2 we get
4(csc2π8+csc2π2+csc23π8)6+1
4(csc2π8+csc23π8)+45
now we know csc3π8=csc(π2π8)=secπ8
4⎜ ⎜sin2π8+cos2π8sin2π8cos2π8⎟ ⎟1
4×4sin2π4116(1/2)21=321
[31]dx
(ii) (2+sec20csc20)2⎜ ⎜ ⎜2+1cos201sin20⎟ ⎟ ⎟2
(2cos20sin20+sin20cos20)(sin40+sin20cos20)2
we know sina+sinb=2sin(a+b2)cos(ab2)
(2sin30cos20cos20)(2sin30)2
(2×12)=1

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon