(i) Given tan2π16+tan22π16+.......+tan27π16
⇒ We know that tanθ=cot(π−θ)
By making Paris we get
⇒(tan2π16+cot2π16)+(tan22π16+cot22π16)+(tan23π16+cot23π16)+tan2π4
⇒ using identify tan2x+cot2x=4csc22x−2 we get
⇒4(csc2π8+csc2π2+csc23π8)−6+1
⇒4(csc2π8+csc23π8)+4−5
now we know csc3π8=csc(π2−π8)=secπ8
⇒4⎛⎜
⎜⎝sin2π8+cos2π8sin2π8cos2π8⎞⎟
⎟⎠−1
⇒4×4sin2π4−1⇒16(1/√2)2−1=32−1
[⇒31]dx
(ii) (2+sec20csc20)2⇒⎛⎜
⎜
⎜⎝2+1cos201sin20⎞⎟
⎟
⎟⎠2
⇒(2cos20sin20+sin20cos20)⇒(sin40+sin20cos20)2
⇒ we know sina+sinb=2sin(a+b2)cos(a−b2)
⇒(2sin30cos20cos20)⇒(2sin30)2
⇒(2×12)=1